简介与安装
概述
Scikit learn 也简称 sklearn, 是机器学习领域当中最知名的 python 模块之一.其包含了许多机器学习的方法的
Sklearn 把所有机器学习的模式整合统一起来了,学会了一个模式就可以通吃其他不同类型的学习模式。 ### 安装 * Windows下使用Anaconda(https://www.anaconda.com/download/)
选择学习方法(模型流程)
安装完 Sklearn 后,不要直接去用,先了解一下都有什么模型方法,然后选择适当的方法,来达到你的目标。 ### 看流程图选方法 klearn 官网提供了一个流程图,蓝色圆圈内是判断条件,绿色方框内是可以选择的算法: ### 详解 从 START 开始,首先看数据的样本是否 >50,小于则需要收集更多的数据。
由图中,可以看到算法有四类,分类,回归,聚类,降维。
监督学习:有数据可以训练 非监督学习: 无数据训练的过程
其中 分类和回归是监督式学习,即每个数据对应一个 label。 聚类 是非监督式学习,即没有 label。 另外一类是 降维,当数据集有很多很多属性的时候,可以通过 降维 算法把属性归纳起来。 例如 :20 个属性只变成 2 个,注意,这不是挑出 2 个,而是压缩成为 2 个,它们集合了 20 个属性的所有特征,相当于把重要的信息提取的更好,不重要的信息就不要了。
然后看问题属于哪一类问题,是分类还是回归,还是聚类,就选择相应的算法。 当然还要考虑数据的大小,例如 100K 是一个阈值。
可以发现有些方法是既可以作为分类,也可以作为回归,例如 SGD。 ## 基础应用(以KNN classifiler为例) ### 要点 Sklearn 本身就有很多数据库,可以用来练习。 以 Iris 的数据为例,这种花有四个属性,花瓣的长宽,茎的长宽,根据这些属性把花分为三类。 我们要用 分类器 去把四种类型的花分开。 今天用 KNN classifier,就是选择几个临近点,综合它们做个平均来作为预测值。
导入模块
1 | from sklearn import datasets |
创建数据
加载 iris 的数据,把属性存在 X,类别标签存在 y: 1
2
3iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target
观察一下数据集,X 有四个属性,y 有 0,1,2 三类: 1
2
3
4
5
6
7
8
9
10
11
12print(iris_X[:2, :])
print(iris_y)
"""
[[ 5.1 3.5 1.4 0.2]
[ 4.9 3. 1.4 0.2]]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]
"""
把数据集分为训练集和测试集,其中 test_size=0.3,即测试集占总数据的 30%: 可以看到分开后的数据集,顺序也被打乱,这样更有利于学习模型: 1
2
3
4
5
6
7
8
9X_train, X_test, y_train, y_test = train_test_split(
iris_X, iris_y, test_size=0.3)
print(y_train)
"""
[2 1 0 1 0 0 1 1 1 1 0 0 1 2 1 1 1 0 2 2 1 1 1 1 0 2 2 0 2 2 2 2 2 0 1 2 2
2 2 2 2 0 1 2 2 1 1 1 0 0 1 2 0 1 0 1 0 1 2 2 0 1 2 2 2 1 1 1 1 2 2 2 1 0
1 1 0 0 0 2 0 1 0 0 1 2 0 2 2 0 0 2 2 2 1 2 0 0 2 1 2 0 0 1 2]
"""
建立模型-训练-预测
定义模块方式 KNeighborsClassifier(), 用 fit 来训练 training data,这一步就完成了训练的所有步骤, 后面的 knn 就已经是训练好的模型,可以直接用来 predict 测试集的数据, 对比用模型预测的值与真实的值,可以看到大概模拟出了数据,但是有误差,是不会完完全全预测正确的。 1
2
3
4
5
6
7
8
9
10
11knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
print(knn.predict(X_test))
print(y_test)
"""
[2 0 0 1 2 2 0 0 0 1 2 2 1 1 2 1 2 1 0 0 0 2 1 2 0 0 0 0 1 0 2 0 0 2 1 0 1
0 0 1 0 1 2 0 1]
[2 0 0 1 2 1 0 0 0 1 2 2 1 1 2 1 2 1 0 0 0 2 1 2 0 0 0 0 1 0 2 0 0 2 1 0 1
0 0 1 0 1 2 0 1]
"""